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I. INTRODUCTION

In general, when a material layer is accelerated

by a light pusher such as provided by magnetic pressure,

the flow is unstable to the Rayleigh-Taylor instability

at the interfaces. A perturbed uniform layer rapidly

forms a spike-bubble structure and may even rupture.

It has been shown previously (Verdon et al. 1982) that

the basic dynamics of this instability process in

real, incompressible fluids can be understood on the

basis of the irrotational flow of layers of ideal,

incompressible fluids.

In the present work for the AFWL, we have studied

the instability of fluid layers driven by 3 4B forces.

In the ideal magnetohydrodynamic (MHD) limit the current

distribution of a SHIVA device lies on the surface of the

accelerating foil so that the J B force acts as a pressure

normal to the surface of the foil. The methods and calculations

reported here demonstrate the basic nonlinear dynamics

of the accelerating foil. Instabilities of both flute

and sausage character are studied.

In Section II, we review the mathematical formu- .411

lation of the motion of acceleratinq ideal fluid layers. ...
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In Section III, we demonstrate the equivalence of a time-

dependent pressure drive and a gravity drive for planar

geometries. We also discuss the dynamics of plane thin

shells and thin shells in cylindrical geometries. In

Section IV, the mathematics of axisymmetric flow are

discussed.



II. MATHEMATICAL FORMULATION

The irrotational flow of an incompressible,

inviscid fluid with constant density is completely

specified by knowledge of the velocity potential

which must satisfy Laplace's equation wherever the

fluid lies. In order to determine , conditions must

be given at the surfaces of the fluid. Bernoulli's

equation may be used as an evolution equation to specify

0 at the surfaces. Thus the mathematical problem is

to solve Laplace's equation with Dirichlet conditions on

complicated boundaries. There are several boundary

integral formulations that solve such problems; in

particular, source or dipole distributions may be

used which lead to Fredholm integral equations of the

first or second kind respectively. The mathematical

properties of Fredholm integral equations of the second

kind guarantee efficient numerical techniques for their

solution, thus providing a decided advantage to the use

of dipole distributions. Of course, one cannot solve

all potential problems via dipole distributions alone;

there are occasions where contributions from a source

or sink must be included, but this step is relatively

straightforward.

Suppose that an incompressible, inviscid fluid

of density P lies between two surfaces x and x2 *

3



Adjacent to the fluid layer, there lies fluid so low

in density that the region it occupies may be considered

effectively a vacuum, yet it is capable of supporting an

external pressure. Alternatively the region is a

vacuum but there are external surface forces present such

as a J x B force where J is restricted to lie in the

surface. In either case, assume that the external pressure

is constant, but with different values p1  and P2 in

each external region adjacent to x1 and x2 ,respectively;

see Figure 1 for a schematic of the flow qeometry. Clearly

the pressure difference will accelerate the fluid layer,

inducing a mean flow.

Thus the velocity potential may be written as

D + E ()

where 'E accounts for the mean (external) flow and

E

PD may be expressed in terms of dipole distributions

along each surface s.
1

2
(p )  z i i(q) n(q). V G(p,q)dq (2)

i=l qs

where p,q are field points, G is the free space

Green's function, n is the normal as shown in Figure

1, and V is the gradient operator with respect toq

q. The choice for 0E depends on the geometrical

4



configuration of the layer; specific cases will be

discussed later.

The velocity u of the surfaces may be calculated

from u = VO . In particular, the velocity potential

D takes on the values 0Di at the surfaces si

respectively, where

ODl(P) = Pii(q)n(q)Vq G(p,q)dq + f 112 (q);(q)v qG(p,q)dq
s1 s2

+ I I (pECs) (3)

i ( Pl(q)n(q)V qG(p,q)dq + f IJ2 (q)n(q)v q(pq)dq

1 2

1 2(P)(PS 2  (4)

Tangential derivatives of *Di together with the external

flow give the tangential velocities of the surface,

but the normal component obtained by differentiating

(2) involves an awkward integral to be performed and

it is preferable to proceed via a different approach.

Introduce the vector potential

= Vx, with V. = 0 (5)

5



In terms of dipole distributions

2
A(p) = f ui(q)Fj(q)x V G(p,q)dq (6)

1i

and the normal velocity follows from i (V x A) which

involves only tangential derivatives of A. Thus, once

Ui are known, the surface velocity ui may be computed

as described above and the surface locations updated

in time.

So far the kinematics have been satisfied; the

dynamic considerations provide an evolution equation

for Pi. The starting point is Bernoulli's equation
g

evaluated at the surfaces,

"Di + E 2
+ p- 2 (ui) + pi = c(t) (i=1,2) (7)

The partial time derivative is Lagrangian in that it

represents the change in the velocity potential following

the surface motion. The substitution of (3) and (4)

into (7) leads directly to Fredholm integral equations
3d t

of the second kind for -- of the form;at

- (p) + 2 * V (q)n(q). G(p,q)dq

S. q
1

+ 2 f d - (q)n(q).V7G(p,q)dq = R (wl,8

-s a t q)q 1L DI2"P110E) (P E S 1 ), (8)
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DL12
- (p) + 2 - - (q)n(q).Vq G(p,q)dq

s1

2 A

-- (q)n(q) V G(pq)dq R 2 (WlP 2 #p2 ,0E) (PCs2  (9)
s 2

where Ri contains all terms without at

The homogeneous parts of equations, (8) and (9)

have nontrivial solutions which reflect the fact the

velocity potential is determined only up to a constant.

According to the Fredholm alternative, equations (8)

and (9) have solutions only if Ri obey a certain

condition. Let ri be the solutions to the adjoint

equations,

Tl(p) - 2 f Tl(q)n(p)V G(p,q)dq
s1

2 f T 2 (q)n(p)'V G(p,q)dq = 0, (p S (

T 2 (p) + 2 J Tl(q)n(p).V G(p,q)dq
s1 p

+ 2 f T2 (q)n(p)VG(p,q)dq = 0, (PC s (11)
s2

then the condition for a solution to (8) and (9) is

7



f R1  1 dp + f R2 T2 dp = 0 (12)
s1  s2

This condition actually provides a relationship

between pit P2 and the external flow " In the

following sections, we will consider various geometrica

configurations of accelerating thin fluid layers, in

which case the form of E will be known since it mus

describe the potential flow that accelerates the fluid

layers. The strength of the acceleration may be

directly related to the pressure difference p - P2

across the fluid layer by means of (12).



III. PLANAR LAYERS AND CYLINDRICAL FLUTE MODES

For planar, two-dimensional fluid flow (see

Figure la) the external velocity potential is obviously

E = iv(t)y (13)

where v(t) is the external, uniform velocity of the

fluid layer. It is convenient to introduce complex

notation and to let z = x + iy describe a field point.

The surface locations may then be parametrized as

z i (a) = x. (a) + iyj(a) , j = 1,2. The vector potential,

which has only one component the streamfunction 11

may be combined with the velocity potential 0 into

the complex potential D = 4+ i' In particular

(P = -iv(t)z (14)

The motion of the fluid surfaces is described

by

qj* =  2. / ? - iv(t) (15)

where the star superscript implies complex conjugation.

The derivation of (15) and subsequent equations follow

closely the approach adopted in Baker et al (1982). The

9



Fredholm integral equations for arTJare

,1 Zla (af')das
u- Re (a') d4

+ 1 Zl()-z2 (') = + 2 - y (16)

2 + Re f Zl (rxI )da,
t z2  )-z 1 (a'

' ' 2  z a (t' ) doc' d
+ 2,~d' 2 dv y (17)

+.:i ~ ~ ~ 2 .,) ()-z2 w '  = 2 2 - 2 (7

where the subscript a implies differentiation with

respect to a and

9l = Re [(a)_ C,) qi ') - z, l(a'
1 z ( L- z2( zl(a)_z ( z') a dt'

+ f-2 [I (') 1( 2  z (a''

- qlq* + 2p1  (18)
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g2 = -Re fz()_Zl(U) [la(ci) - zq2(z') da'

1 f"2 ) q 2 (a)-q 2(a I) i

+ i Z2Ia)z2(c') q~c(c') - zf-cq)z2( ,) z2 0i'1 da'

+ q2q2 - 2P2  (19)

In order for (17) and (18) to have a solution, the

condition (12) must be satisfied; thus

2 ! fY2T2 da + f YlTI d] = f g 2 T2 da - f qTI d

(20)

dvFor given p1  and p2' (20) determines at The form

of the equations (16) and (17) is identical to those

for a fluid layer falling under the influence of gravity

dv
with g = - dv

The above analysis demonstrates the equivalence of

pressure drive (normal to the surface) in planar geometries

and a time-dependent gravity drive (in a fixed direction).

Eq. (20) guarantees conservation of momentum in these

systems and so determines the mean acceleration of the layer.

The numerical solution to (15), (16), and (17)

follows a standard approach adopted by Baker et al (1982).

We present here the results for = - 1. The initial
dt

profile has the form

11



z =+i

z= + i 0.06 tcos a.

Figure 2 shows the evolution in time of the surface

locations. A clearly observed spike develops and the

layer thickness of the bubble thins dramatically.

Figure 3 shows the layer thickness at the bubble center

as a function of time. Unfortunately,the code presently

is not accurat beyond a time of approximately 4. Further

calculations in time require a modification of the numerical

quadrature for the integrals in (16),(17),(18), and (19).

Next, we consider cylindrical geometry as shown

in Figure lb. The external velocity potential now

has the form

E= - A(t) log(z) (21)

An equation similar to (20) is easily obtained, but

there is an important difFerence between the previous

case and the present one; the external flow no longer

has the appearance of that induced by a gravity field.

Numerical calculations give the results shown in Figure 4.

The spike and bubble structure are different from those

observed in Figure 2.

finally, in the next section, we present the

mathematical formulation for axisymmetric flow, which

is somewhat different from that considered in this section.

12



IV. AXISYMMETRIC FLOW AND SAUSAGE MODES

The generalized vortex method of Baker, Meiron and

Orszag (1980,1982) is a boundary integral technique applied

to free surface flow in incompressible, inviscid fluid

which contain regions of constant, but different densities.

When the free surface lies betwein fluid and vacuum, a

simpler, but equivalent metho! may be used. This method

is described in some generality before being applied to

axisymmetric flow.

The free surface is represented as a dipole layer of

strength p. The velocity potential 0 may then be

written as

*(p) = ( j(q) L(pq) dq (22)

where G is the free space Green's function for Laplace's

equation, p and q are field points and n is an

outward normal. For convenience we assume that the free

surface is smooth (has a continuous normal) and closed;

an open surface may be considered as a particular limit

of a closed surface. The normal derivative of G is

13



taken with respect to q, keeping p fixed. As p

approaches the free surface along the normal, the potential

takes on different values on either side

4I(P) = (q) L (pq) dq + 1.(p) (23)

as p tends to the surface from the inside and

o(p)= j (q) *"(p,q)dq - (p)(24)

as p tends to the surface from the outside. Clearly,

P(P) = OI(p) -o (p).

If (p) is known, then the potential can be evaluated

from (22) and the fluid velocity follows from 5 = V•

Alternatively one may obtain the fluid velocity from the

velocity vector potential A ; u = v A. For a dipole

layer

(p) = ( q) f x vG(p,q) dq (25)

where the gradient is taken with respect to q and ft

is the unit outward normal. As p tends to the surface,

1(p) is continuous.

Normally in free surface flow problems, the velocity

is required only at the surface in order to update its

location. This is easily accomplished if W is known.

14



In fact, the tangential velocity components can be computed

from VO and the normal component from V x A. In both

cases, only tangential derivatives are required thus avoiding

the more complicated and more difficult evaluation of normal

derivatives.

The basis of the generalized vortex method is the use

of an evolution equation for p derived from Bernoulli's

equation, by which p is updated and the free surface

velocity calculated as described above. The method involves

evaluating the time derivatives of (23), (24) and (25),

which, in the case of axisymmetric flow, is tedious

algebraically and presents difficulties numerically.

However, if one is interested in the flow of

a free surface between fluid and vacuum one may use

Bernoulli's equation directly to update the potential at

the free surface as it moves. Then (23) or (24) is used

as a Fredholm integral equation of the second kind for P

Finally, knowing jA is computed from (25) and the free

surface velocity is computed as described above. This is the

approach adopted for axisymmetric free surface flow.

Introduce a cylindrical coordinate system (R,e,z) where

R is the radius, 6 the aximuthal angle and z the axial

position. The free surface is parametrized by R(e,t) and

z(e,t). Let I(e) be the principal-value integral in

(23) and (24)

15



1 (e ))de'
I (e) =(ze-e))2 )2,72 1 z e(e')K W[(zlel-z(el)2+lRlel+Rl))2]/ I ee)k

ze (e')[(z(e)-z(e')) 2 +R2 (e)-R 2 (e')]-2R(e')R e (e')(z(e)-z(e'))

(z(e)-z(e')) 2+(R(e)_R(e,) 2

x E(k)} (26)

where K(k) and E(k) are the complete elliptic integrals

of the first and second kinds respectively, the subscript

e refers to differentiation with respect to e (t fixed)

and

k = 4R(e)R(e') (27)2 ' 2(z(e)-z(e')) +(R(e)+R(e ))

The only non-vanishing component of A is the azimuthal

component, expressed as */R , where ip plays the role

of the streamfunction in axisymmetric flow. At the surface,

1 r - 6 J ,  (e')de'
j(e) 2 2 1/2

t(z(e)-z(e')) +(R(e)+R(e'))2 I

[z e (e1 (e) -z (el) ) -R(e ') R e(e' )] K(k)

-[Z e(e')(z(e)-z(el))-R(e')R e(e')]

(z (e) -z (e ) ) 2 +R2 (e)+R 2 (e ' )]+2R 2 (e)R(e')R e(e')

(z(e)-zle)) 2+ (R(e)-R(e')) 2  (28)

16



The radial and axial velocity components, u and w

respectively, are given by

u = - 1 D (29a)DR R z

w = o aD=
3z R DR (29b)

To update the free surface, the velocity components at the

surface must be known. They can be expressed in terms of

the derivatives of 0 and along the surface. Using

(29) one finds

R 2 + z e  R u + z w (30a)e Re0 e e

e e 3 Ze +z = R(z u - R w) (30b)

where will either be @I or (DO depending on which

side of the interface the fluid lies. Inverting the

above equations, one obtains

DR u (R z /R ) / s 2
at e e ee e (31a)

z 2 (31b)
t ee ee/ e

17



as the evolution equations for the surface's location,

where

s2 = R2 + z 2 (32)
e e e

Finally, Bernoulli's equation is used as an evolution

equation for 0 . As a specific example, consider a

spherical bubble that is compressed by an external pressure

gradient in the fluid. write the potential as

A(t)[R;z 1/2 + €(33)

where A is the strength at a sink (or source, if A< 0)

placed at center of the bubble. After substituting (33)

into Bernoulli's equation, one finds at the surface

dA 2
3 -. + _ __ _ A + P I = P

at 2 3R 3z CR2+z2 ]1/ 2  'R 2+z2 fi

(34)

where the time derivative is taken following the motion

described by (31) the fluid is assumed stationary far

from the bubble with pressure PO , the density is 1 and

P. is the pressure inside the bubble. If the bubble is

a perfect sphere, one may set -0 and p2 - R2 + z2 so

that (31) and (34) become

18



1 dA A2

at+ P 0 " 1 (35)

dpAdt (36)

We may subtract (35) from (34) to obtain

1 -2+2) + !LA 1 A 2

at 2" z7]/ 2 P ](R 2+z2 2 T

(37)

Also,

aR _~AR
-t- U AR2+z2 3/2 (38a)

z A , . z .
at [R2+ 2 ]3/2 (38b)

IR +Z I

where u and w are computed from the dipole representation

for 0 as described. The above equations, (35), (36), (37)

and (38) constitute a set of evolution equations for the

motion of the bubble surface.

The method of solution is as follows. Suppose

A, p, R, z and i are all known at some given time. The

time derivatives of A and p are known from (35) and

(36). We then solve for u by iteration from (24)

with 0 "

19



Wn+ (e) - 2 (e) + 21n (e) (39)

where I n (e) represents I(e) with 1 (e') replaced by

Un(e'). The iteration process is known to be globally

convergent. Moreover standard extrapolation techniques

may be used to ensure that only a few (2 -3) iterations

are required for accurate results. Knowing p(e), 4 (e)

is computed from (28) and then d and i are determined

from (31). Finally, the time derivatives of 0, R and

z are evaluated by (37) and (38) and the surface may

be updated.

To execute this method of solution numerically requires

some care. Points evenly distributed in e are introduced

as a discrete representation for the surface. All

derivatives in e are approximated by spline derivatives.

The difficulties lie in the numerical evaluation of the

integrals (26) and (28). The complete elliptic integral

of the first kind, K(k), has a logarithmic singularity

as k * 1 which occurs when e' -e. The complete

elliptic integral of the second kind behaves as

(e'-e)logle'-e i

as e' P e. A further complication is the fact that, for

e close to the axis, k varies from 0 at the axis to

1 at el = e. This rapid variation in k must be accounted

for in any accurate numerical quadrature.

The integrals may be regularized by using the fact

that, when - 1, I(e) = 1 and 4#(e) = 0. In addition,

20



a particular quadrature has been devised to account for

the presence of terms containing logarithms. Suppose that

the parametrization of the free surface is such that

0 < e < w and R(O) - R(O) = 0, that is e = 0,1T

correspond to the poles of the bubble. K(k) and E(k)

may be approximated by

K(k) = AK(m) - BK(m) log Iml (40a)

E(k) =A(m) - BE(m) log Iml (40b)

where m = 1 - k2  and AK (m), AE(m) , BK(m) and BE( m )

are polynomials in m (see Abramowitz and Stegun, 1964).

Thus one may split the integrals into parts that contain

logarithms or not. Define

F(AB)= (e') - I(e) '
U(z(e)-z(e')) +(R(e)+R(e,)) I

Z e(e, ) [(z(e)_zle,)) 2+R 2le).R 2le,)]-2R(e')Re (el ) (z(e)-z(e')) B
(z (e)-z (e')) +(R(e)-R(e ))

(41)

1 i e + f 7 F(AKAE)de' (42)
0

21



12 = f7 F(BKIB ) [log Iml- log jqi I de' (43)

13 * - I F(BKBE) log Icl de' (44)

Then I I - 12 - 13* Here q models the behaviour of

m; m = 1 at e' 0,r and m = 0 at e' = e, so

the variation in m is rapid when e is near 0 or Tr.

A good choice for q is

a(e'-e)2

q =2 (45)e'I (Tr-e') +a(e'-e)

where a 1/i 2 + /[4e (T-e)]. Since F(AK,AE) and

F(BKBE) are analytic, I1  and 12 may be evaluated by

the trapezoidal rule with O(h2 ) accuracy,where h is

the spacing in e of the points. For 13, a special

quadrature is used. F(BK B E ) is approximated as a

piecewise continuous linear function and 13 is then

integrated analytically; this leads to

13 w. F. (46)

where F. is the value of F(BKBE) at e' After

some algebra, one finds

22



J h 2A -A-+(e-e!)(2B -Bj _-Bj+ )+h(Bj+I-Bj-z )

(47)

where

A. (e-=o 1(a (e!-e) 2}

2(O-1) (e.-e) -r +2s(o-)2

2 logt(a-1)(e!-e) 2+r(e!-e) +sI4 (a-i)

r(el'-e) 2 1/2 )
r- e-e) .+ r [4s(°-1)-r tan 1  2(-i)(e'-e)+r-
2(2-) (a-i) [4s(a-l)-r 21/2

(48)

B =(e-e)log {o (e3-e) 2

2(a-1) (e-e) +r 2
log { (o-1) (e!-e) +r(e -e)+s }

- 24(o-1)-] )an-

(4s 0 -1) -r 2 1 1 2  - 1 ?2(0-1)(e!-e-tr)
(a -1) t n[4s (-) r 2 11/ (49)

and r =7- 2e, s = e(Tr-e).

The total quadrature error for I is of order O(h2

near the axis and is more accurate away from the axis. A

quadrature for *(e) is similarly constructed; define
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G ~ [i(e'I) - ) e

[ze (el) (z(e)-z(el))-R(es)R e e)) (50)

H (p (ue ) - p (e) I

liz (e)(ze)-~e)-R~')R(eI) 
)

x((z(e)-z(e ))2+R2(e)+R2(el)] + 2R2(e)R(e')Re(el (51)

JGAK(m)
0 (52)

-I22 2 1 A(M)l de'
L(z(e)-z(e) +(R(e)-R(e')) se (e-e')l

12  ITj H e' A E(M) de'

0 (ee-e)-lo (54)j e

3 ~f[GB K(M) (4
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H BE (m)

4 F 2 I)2 log jqj de'
0 (z(e)-z(e,)) 2 +(R(e)-R(e'))

(55)

Then = 'i - *2 - *3 + *4 The integrals I1  and 13

are evaluated by the trapezoidal rule, and 14 is

evaluated by the special quadrature (46). However

12 has a pole singularity, since H -(e'-e) as e'

approaches e. We devise a quadrature by approximating

HB (m)/[s 2(e'-e)] as a piecewise continuous linearE e
function and integrating analytically; thus

W2 = w. H. (56)

where

W (e!

h = el-e)logle'-el

+ _-el-2  -ej) (57)
33

Starting with the initial conditions A = 0, * = 0,

R = (1 + Ecos(2e))sin(e), z = - (1 + Ecos(2e))cos(e),

p = 0.9703797, the surface is discretised with 33 points

and updated in time with a fourth order Adams-Bashforth

method with a timestep of 0.01. The pressure difference

25



PO P = 1 and e = 0.1. Figure 5 shows the

profile of the bubble at various times. Clearly a Rayleigh-

Taylor-type instability develops at the waist of the bubble

and will probably lead to bubble separation into two

smaller bubbles.
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(a) Flute mode.
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(b) Axisymmetric sausage mode.

Figure 1. Schematic diagram of flow geometry for

instability problem.
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Figure 3. A plot of shell thickness versus time for
the flute mode instability problem.
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Figure 4. Results of a calculation with a small
pertrbaion(0. 5%).
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Figure 5. A plot of interface geometry versus time
for the sausage mode instability problem.
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